首页 我的
肖侠明
肖侠明 主任医师
好大夫工作室 儿科

认知障碍:多种基因异常

(1)基因异常:已发现多种基因异常参与神经细胞的退行性变性。例如,在PD患者有ot-synucleinparkinpark3基因突变,a-synuclein基因第209位的核苷酸发生了G-A错义突变,使其蛋白质第53位的丙氨酸(Ala)变成了苏氨酸(Thr),变异的蛋白质是PD患者神经细胞胞浆中特征性嗜酸性包涵体,即路易(Lewy)小体的重要成分;已发现有30多种不同parkin基因缺失和点突变与早发性PD有关,改变的parkin蛋白可导致依赖泛素的蛋白降解过程异常,促使parkin蛋白聚集。在AD患者,已发现5个相关基因突变,所编码的蛋白质依次为淀粉样前体蛋白(amy-loid precursor proteinAPP)、早老蛋白-1(presenilin-1PS-1)PS-2、载脂蛋白E(apolipoprotein EapoE)α2-巨球蛋白(α2-macro谷氨酸bumin)。其中,APPPS基因突变和ApoE基因多态性可导致APP异常降解,产生大量B淀粉样多肽(AB),过量产生的Ap不断在神经细胞间聚集形成老年斑,同时可导致过氧化损伤(损伤生物膜、破坏细胞内钙离子稳态、抑制星形胶质细胞、使一些关键酶失活)、炎症反应和神经细胞死亡。好大夫工作室儿科肖侠明

(2)蛋白质合成后的异常修饰:正常时,蛋白质合成后的不同加工修饰赋予蛋白质不同的结构和功能,是蛋白质结构和功能多样性的基础。蛋白质的异常修饰导致其结构异常、功能降低或丧失。在AD患者,发现细胞骨架蛋白tau被异常磷酸化(phosphorylation)、异常糖基化(glycosylmion,酶促反应)、异常糖化(glycmion,非酶促反应)和异常泛素化(ubiquitilation)修饰,异常修饰的tau蛋白沉积在神经细胞中形成神经原纤维缠结。关于tau蛋白异常糖基化、异常糖化和异常泛素化的机制尚不清楚,目前认为AD患者tau蛋白被异常磷酸化可能与蛋白磷酸酯酶(proteinphosphatase)和蛋白激酶(protein kinase)调节失衡有关。蛋白磷酸酯酶催化蛋白质去磷酸化,AD患者脑中蛋白磷酸酯酶的活性明显降低,使tau蛋白去磷酸化减弱,导致AD患者脑中tau蛋白异常过度磷酸化。蛋白激酶催化蛋白质磷酸化,在AD患者,大脑颞叶皮层多种蛋白激酶的表达量或活性比对照者显著增强。上述磷酸化系统失衡导致tau蛋白异常过度磷酸化,异常修饰的tau在神经细胞内聚集是AD患者神经细胞退化的重要机制。

(3)脑组织慢病毒感染:最常见的由慢病毒感染引起的人类中枢性疾病为CJD,是由一种具传染性的朊蛋白(prion proteinPrP)所致。这种PrP类似于病毒可传播疾病,但与已知病毒不同是,它没有任何可检测到的核酸序列。人类PrP蛋白有两种异构体,分别是存在于正常细胞的PrP(PrPc)和引起朊蛋白病的PrPsc(PrP scrapie)。两种异构体的序列并无差别,但蛋白质的空间构型不同。PrPc是一种细胞内膜结合蛋白,PrPsc不仅存在于细胞内膜,还存在于朊蛋白病患者神经细胞外的淀粉样蛋白纤丝和斑块中;prpsc可促进PrPc转化为PrPsc。在人体内,PrPsc的增殖是通过一分子PrPc与一分子PrPsc结合形成杂二聚体,此二聚体再转化成两分子PrPscPrPsc便依此呈指数增殖。有朊蛋白基因突变时,细胞中的PrPc。更易从α-螺旋转变成β-片层,此时更容易与PrPsc结合,导致PrPsc增殖和聚集。

3.慢性脑缺血性损伤  神经元能量储备极少,对缺血、缺氧非常敏感,完全缺血5分钟即可导致神经元死亡。脑缺血造成大脑皮层损伤是引起不同类型认知障碍的常见原因。统计资料表明:脑卒中患者在发病后出现痴呆的危险性较同龄对照组明显增高;有脑卒中史的老年群体的认知水平亦低于无卒中史的同龄老人。脑细胞缺血引起认知异常的机制可能与下述因素有关。

(1)能量耗竭和酸中毒:在缺血、缺氧状态下,细胞的能量代谢转为无氧酵解。无氧酵解生成ATP的效率低,使细胞出现能量耗竭。无氧酵解引起脑组织缺血性乳酸酸中毒,细胞Na+-K+泵功能损伤,K+大量外溢,同时Na+Cl-Ca2+大量流人细胞内引起细胞损伤;缺血区乳酸堆积还可引起神经胶质和内皮细胞的水肿和坏死,加重缺血性损害。

(2)细胞内Ca2+超载:脑缺血时,神经细胞膜去极化,引起大量神经递质释放,兴奋性递质(如谷氨酸)的释放激活NMDA受体,使钙通道开放,Ca2+内流增加;如激活非NMDA受体,使Ca2+从内质网释放至细胞浆内;膜去极化本身也启动了电压依赖性钙通道,加重Ca2+内流。神经细胞Ca2+超载可通过下述机制导致细胞死亡:①Ca2+超载时,大量Ca2+沉积于线粒体,干扰氧化磷酸化,使能量产生障碍;激活细胞内Ca2+依赖性酶类,其中Ca2+依赖的中性蛋白水解酶过度激活可使神经细胞骨架破坏;激活磷脂酶A和磷脂酶C,使膜磷脂降解;产生大量游离脂肪酸,特别是花生四烯酸,后者在代谢过程中产生血栓素、白三烯,一方面通过生成大量自由基加重细胞损害;另一方面可激活血小板,促进微血栓形成,在缺血区增加梗死范围,加重脑损害;脑缺血时,脑血管平滑肌,内皮细胞均有明显Ca2+超载,前者可致血管收缩、痉挛,血管阻力增加,延迟再灌流,使缺血半暗带内侧支循环不能形成,从而脑梗死灶扩大;后者可致内皮细胞收缩,内皮间隙扩大,血脑屏障通透性增高,产生血管源性脑水肿。

(3)自由基损伤:在急性脑缺血时,自由基产生和清除平衡状态受到破坏而引起脑损伤。其机制为:缺血脑细胞能量衰竭,谷氨酸、天门冬氨酸(Asp)增多,此时电压依赖性钙通道和NMDA受体操纵的钙通道开放,钙离子大量内流,使黄嘌呤脱氢酶转化为黄嘌呤氧化酶,后者催化次黄嘌呤氧化为黄嘌呤并同时产生氧自由基;钙离子大量内流还可激活磷脂酶A,造成血管内皮细胞和脑细胞的膜磷脂降解,花生四烯酸产生增加,后者代谢产生自由基;缺血区脑细胞线粒体内钙离子增多,三羧酸循环发生障碍,不能为电子传递链的细胞色素氧化酶提供足够的电子将O2还原成H2O,从而生成氧自由基,并漏出线粒体;急性脑缺血时,NO增多,NO能与氧自由基相互作用形成过氧亚硝基阴离子,后者又分解成羟自由基(OH-)和二氧化氮自由基(NO2-)梗死灶内游离血红蛋白和铁离子与存在于细胞内的H202发生反应,产生OH-和氧自由基。儿茶酚胺等物质亦可发生氧化反应生成氧自由基。缺血灶由于趋化因子增加,在血管内皮表面吸附大量中性粒细胞和血小板,前者通过细胞色素系统和黄嘌呤氧化酶系统产生O氧自由基和H202,后者通过血小板活化因子引起细胞内Ca2+浓度升高,促进自由基生成。

(4)兴奋性毒性:中枢神经系统中大部分神经递质是氨基酸类,包括谷氨酸、天冬氨酸、γ-氨基丁酸(GABA)和甘氨酸。其中,谷氨酸和天冬氨酸对神经元有极强的兴奋作用,故称为兴奋性氨基酸(excitatory amino acidEAA)GABA和甘氨酸对神经元行使抑制作用,故称为抑制性氨基酸(inhibitory amino acidIAA)兴奋性毒性(excitatory toxicity)”指脑缺血缺氧造成的能量代谢障碍直接抑制细胞质膜上Na+-K+-ATP酶活性,使胞外K+浓度显著增高,神经元去极化,EAA在突触间隙大量释放,因而过度激活EAA受体,使突触后神经元过度兴奋并最终死亡的病理过程。EAA通过下述两种机制引起兴奋性毒性:一是AMPA受体和KA受体过度兴奋引起神经细胞急性渗透性肿胀,可在数小时内发生,以Na+内流,以及Cl-H2O被动内流为特征;另一种是NMDA受体过度兴奋所介导的神经细胞迟发性损伤,可在数小时至数日发生,以持续的Ca2+内流为特征。

本文为转载文章,如有侵权请联系作者删除。

真诚赞赏,手留余香
肖侠明
肖侠明 主任医师
好大夫工作室 儿科
问医生 问医生 去挂号 去挂号
App 内打开